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An effective quantum parameter is obtained for the band ferromagnet in terms of orbital degeneracy and
Hund’s coupling. This quantum parameter determines, in analogy with 1 /N for the generalized Hubbard model
and 1 /S for quantum spin systems, the strength of quantum corrections to spin stiffness and spin-wave
energies. Quantum corrections are obtained by incorporating correlation effects in the form of self-energy and
vertex corrections within a spin-rotationally-symmetric approach in which the Goldstone mode is explicitly
preserved order by order. It is shown that even a relatively small Hund’s coupling is rather efficient in strongly
suppressing quantum corrections, especially for large N, resulting in strongly enhanced stability of the ferro-
magnetic state. This mechanism for the enhancement of ferromagnetism by Hund’s coupling implicitly in-
volves a subtle interplay of lattice, dimensionality, band dispersion, spectral distribution, and band filling
effects.
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I. INTRODUCTION

Experimental studies of magnetic and electronic excita-
tions in various band ferromagnetic systems continue to be
of strong current interest, as evidenced by intensive neutron-
scattering studies of spin-wave excitations throughout the
Brillouin zone in ferromagnetic manganites highlighting
magnon damping and anomalous zone-boundary softening,1

angle-resolved photoemission spectroscopy �ARPES� studies
of iron to investigate many-body interaction between quasi-
particles at the Fermi level,2,3 and spin-polarized electron-
energy-loss spectroscopy �SPEELS� studies of surface spin
waves in ultrathin Fe films showing strong spin-wave soft-
ening due to reduction in exchange interaction.4 Driven by
recent advances in the resolution of experimental probes,
these studies provide valuable insight into details of the mi-
croscopic mechanism and characteristics of band ferromag-
netism.

Realistic multiband calculations of spin-wave dispersion
using an itinerant-electron model, in bulk bcc Fe, e.g., have
so far been carried out only in the random-phase approxima-
tion �RPA� owing to the complexity of the band structure.5,6

Recently, a tight-binding model involving nine orbitals �4s,
4p, and 3d� per Fe atom has been used to calculate spin-
wave dispersion in the RPA,7 and electron self-energy cor-
rections in the ferromagnetic phase of iron were studied in
light of recent ARPES experiments on Fe.

Band ferromagnetism is in general an intermediate to
strong coupling phenomenon.8 Spin-wave excitations in a
single-band ferromagnet are therefore strongly renormalized
by correlation effects, as studied recently by incorporating
self-energy and vertex corrections within a systematic
inverse-degeneracy �1 /N� expansion scheme in which the
spin-rotation symmetry of the Hamiltonian and hence the
Goldstone mode9 are explicitly preserved order by order be-
yond the RPA.10 For the single-band Hubbard model, the
correlation-induced minority-spin spectral-weight transfer
was shown to result in strong spin-wave energy renormaliza-
tion �quantum correction�, and the interplay of lattice, band

dispersion, and band filling effects was studied on the com-
petition between the delocalization and exchange energy
contributions to the spin stiffness, which fundamentally de-
termines the stability of the ferromagnetic state in an itiner-
ant ferromagnet.11

So how are quantum corrections generally affected by or-
bital multiplicity and Hund’s coupling? This question is of
fundamental importance in view of the multiband nature of
transition-metal ferromagnets but has not been addressed so
far in the literature. The special case of the N-orbital Hub-
bard model with interaction −�U /N��i���Si�� · ���Si��,
where the indices � ,� refer to the N degenerate orbitals at
each lattice site i, has been considered earlier.10 In this orbit-
ally symmetric case, the interorbital interaction �Hund’s cou-
pling� is identical to the intraorbital interaction, and quantum
corrections are simply suppressed by the inverse-degeneracy
factor 1 /N. However, for arbitrary Hund’s coupling, the role
of orbital degeneracy on quantum corrections to spin-wave
excitations has not been investigated so far.

In this paper, we will extend the above Goldstone-mode-
preserving approach for the study of correlation-induced
quantum corrections to a multiband ferromagnet with arbi-
trary Hund’s coupling. We will show that orbital multiplicity
and Hund’s coupling strongly suppress the quantum correc-
tions and spin-wave energy renormalization in a band ferro-
magnet. We will further show the existence of an effective
quantum parameter which, in analogy with 1 /S for quantum
spin systems and 1 /N for the orbitally symmetric N-orbital
Hubbard model, plays the role of � in effectively determin-
ing the magnitude of quantum corrections in a multiband
ferromagnet.

A variety of methods have been employed to investigate
the role of orbital degeneracy and Hund’s coupling on the
stability of metallic ferromagnetism, as briefly reviewed be-
low. The magnetic phase diagram was obtained by finite-
temperature quantum Monte Carlo calculations within the
dynamical mean-field theory �DMFT�.12 While DMFT calcu-
lations for the single-orbital Hubbard model on fcc-type lat-
tices showed that a necessary condition for ferromagnetism
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was a highly asymmetric density of states �DOS� with large
spectral weight near one of the band edges,13 orbital degen-
eracy and finite Hund’s coupling were shown to effectively
stabilize ferromagnetism in a broad range of electron fillings
even for a featureless DOS symmetric about the band
center.12

Finite-temperature magnetism of iron and nickel was in-
vestigated using the LDA+DMFT �where LDA stands for
local-density approximation� approach which combines
DMFT with realistic electronic structure methods, and many-
body features of the one-electron spectra and the observed
magnetic moments were described.14 The Coulomb interac-
tion energy values used were U=2.3�3.0� eV for Fe �Ni� and
J=0.9 eV for both Fe and Ni, obtained from constrained
LDA calculations.

The roles of lattice structure and Hund’s coupling were
investigated for various three-dimensional lattice structures
within the DMFT using an improved quantum Monte Carlo
algorithm that preserves the spin-SU�2� symmetry. It was
shown that the earlier Ising-type DMFT calculations12 over-
estimate the tendencies toward ferromagnetic ordering and
the Curie temperature. Both the lattice structure and orbital
degeneracy were found to be essential for the ferromag-
netism in the parameter region representing a transition
metal.15,16 Other numerical techniques such as exact
diagonalization,17,18 density-matrix renormalization group,19

slave boson,20,21 and the Gutzwiller variational scheme22

have also been employed.
The special case of two orbitals per site and quarter filling

yields an insulating ferromagnetic state with staggered or-
bital ordering, as suggested by the equivalence to an “anti-
ferromagnetic” state in the pseudospin space of the two or-
bitals, and first proposed as a mechanism for stabilization of
ferromagnetism by Roth.23 However, the estimated Curie
temperature was found to be too low for transition-metal
ferromagnets by a factor of 10. The insulating ferromagnetic
state at quarter filling has also been investigated at strong
coupling24,25 and using the exact diagonalization
method.26–28

II. TWO-ORBITAL HUBBARD MODEL WITH HUND’S
COUPLING

We consider a degenerate two-orbital Hubbard model,

H = − �
�ij�,�

tij�ai��
† aj�� + ai��

† aj�� + H.c.� − U�
i

�Si� · Si�

+ Si� · Si�� − 2J�
i

�Si� · Si�� , �1�

where � and � refer to the two degenerate orbitals at each
lattice site i and Si�=�i�

† �� /2��i� are the local spin opera-
tors for the two orbitals �=� ,� in terms of the fermionic
operators �i�

† = �ai↑�
† ai↓�

† � and the Pauli matrices �. The hop-
ping terms tij = t for nearest neighbors and t� for next-nearest
neighbors. The above model includes an intraorbital Hubbard
interaction U and an interorbital Hund’s coupling J. As our
objective is to investigate the role of Hund’s coupling on
quantum corrections in the orbitally degenerate ferromag-

netic state, we have not retained the interorbital density-
density interaction term V0ni�ni�, also conventionally in-
cluded in the orbital Hubbard model. This density interaction
term is important in the context of orbital ordering in
manganites,24 especially near quarter filling,23 as expected
from its structural similarity with an antiparallel-spin inter-
action in the pseudospin �� ,�� space, which will favor anti-
ferromagnetic orbital ordering.

The orbital Hubbard model above has been written in an
explicitly spin-rotationally-symmetric form. This continuous
symmetry implies the existence of Goldstone modes in the
spontaneously-broken-symmetry state,9 which will play a
central role in our study of correlation effects in the ferro-
magnetic state in which self-energy and vertex corrections
are systematically incorporated such that the Goldstone
mode is explicitly preserved order by order.

III. TRANSVERSE SPIN FLUCTUATIONS

We assume a ferromagnetic ground state with polarization
in the z direction and examine transverse spin fluctuations
representing both collective spin-wave and single-particle
Stoner excitations. We consider the time-ordered transverse
spin-fluctuation propagator in this broken-symmetry state:

	��
−+�q,
� = i� dtei
�t−t���

j

eiq·�ri−rj���0�T�Si�
− �t�Sj�

+ �t��	��0� ,

�2�

where the orbital indices � ,�=� ,� and the fermion spin-
lowering and spin-raising operators Si�

� =�i�
† ��� /2��i�.

The transverse spin-fluctuation propagators can be ex-
pressed exactly in terms of the irreducible particle-hole
propagators 
, as shown diagrammatically in Fig. 1. The
corresponding coupled equations are

	��
−+�q,
� = 
���q,
� + 
����q,
�U����	���

−+ �q,
� , �3�

where the interaction term U����=U for ��=�� and U����
=J for ����� is shown as the wavy line in Fig. 1, and
summation over repeated indices is implied.

As external probes such as magnetic field or the neutron
magnetic moment couple equally to electron magnetic mo-
ments in the two degenerate orbitals, it is physically relevant
to consider the sum

	−+�q,
� = 	��
−+�q,
� + 	��

−+�q,
� �4�

of the intraorbital and interorbital contributions. Indeed, it is
particularly convenient to solve the coupled equations for the
total transverse propagator, and we obtain

FIG. 1. Exact diagrammatic representation of the transverse spin
propagator in terms of the irreducible particle-hole propagator.
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	−+�q,
� =

�q,
�

1 − �U + J�
�q,
�
, �5�

where


�q,
� = 
���q,
� + 
���q,
� �6�

represents the total irreducible particle-hole propagator, for
which a systematic expansion will be discussed below.

IV. SYSTEMATIC EXPANSION FOR THE IRREDUCIBLE
PARTICLE-HOLE PROPAGATOR �

In analogy with the inverse-degeneracy �1 /N� expansion
for the orbitally symmetric N-orbital Hubbard model,10 we
consider a systematic expansion:


 = 
�0� + 
�1� + 
�2� + . . . �7�

for the irreducible propagator 
�q ,
� in orders of fluctua-
tions. The first term 
�0� is simply the bare particle-hole
propagator, whereas the higher-order terms 
�1� ,
�2�, etc.,
represent quantum corrections involving self-energy and ver-
tex corrections, as discussed below.

In the inverse-degeneracy expansion scheme,10 the dia-
grams were systematized in terms of the expansion param-
eter 1 /N, with the nth-order term 
�n� involving n powers of
1 /N. Thus the expansion parameter 1 /N played, in analogy
with 1 /S for quantum spin systems, the role of �. In the
following we will show that the dimensionless factor �U2

+J2� / �U+J�2 �and a similar factor for the N orbital case�
plays the role of the expansion parameter for arbitrary
Hund’s coupling. This allows for a continuous interpolation
between the orbitally independent limit �J=0� and the orbit-
ally symmetric limit �J=U�.

A. Random-phase approximation

Retaining only the zeroth-order term 
�0� yields the RPA,
amounting to a “classical” description of noninteracting spin-
fluctuation modes. As the hopping term is diagonal in orbital
indices, the zeroth-order term involves only the intraorbital
contribution:


��
�0��q,
� 
 	0�q,
� = �

k

1

�k−q
↓+ − �k

↑− + 
 − i�
, �8�

where the Hartree-Fock level band energies �k
�=�k−�� in-

volve the exchange splitting,

2� = �U + J�m , �9�

between the two spin bands. The superscripts +�−� refer to
particle �hole� states above �below� the Fermi energy �F.
Here the magnetization m=2�Si�� is assumed to be identical
for both orbitals �=� ,� in the orbitally degenerate ferro-
magnetic state. For the saturated ferromagnet, the magneti-
zation m is equal to the particle density n for each orbital.

At the RPA level, the two �intraorbital and interorbital�
components of the transverse spin propagator are easily ob-
tained by solving the coupled Eq. �3�, and we obtain

�	��
−+�q,
�	RPA =

1

2
� 	0�q,
�

1 − U+	0�q,
�
+

	0�q,
�
1 − U−	0�q,
��

= �	��
−+�q,
�	RPA, �10�

�	��
−+�q,
�	RPA =

1

2
� 	0�q,
�

1 − U+	0�q,
�
−

	0�q,
�
1 − U−	0�q,
��

= �	��
−+�q,
�	RPA, �11�

where the two effective interaction terms above are U�

=U�J. As seen, the propagators involve linear combinations
of in-phase and out-of-phase modes with respect to orbitals.
These two modes represent gapless �acoustic� and gapped
�optical� branches, as shown below. We also introduce ker-
nels for these two propagators which will be used later in the
expressions for quantum corrections:

����
−+	RPA = ��	��

−+	RPA − 	0�/	0
2 =

1

2
� U+

1 − U+	0
+

U−

1 − U−	0
� ,

�12�

����
−+	RPA = �	��

−+	RPA/	0
2 =

1

2
� U+

1 − U+	0
−

U−

1 − U−	0
� .

�13�

The in-phase mode with effective interaction U+=U+J
corresponds to the usual Goldstone mode �acoustic branch�.
This is expected as the exchange splitting 2�= �U+J�m in
the 	0 energy denominator involves the same effective inter-
action U+. On the other hand, the out-of-phase mode with
effective interaction U−=U−J yields gapped excitations �op-
tical branch�. A typical spectral function plot is shown in Fig.
3, with the inset showing dispersion of the acoustic and op-
tical branches and onset of Stoner excitations.

From Eqs. �5� and �8�, poles of the magnon propagator
yield the �gapless� magnon energies 
q

0 at the RPA level. The
spin stiffness D=
q /q2, defined in terms of the magnon en-
ergy for small q, provides a quantitative measure of the sta-
bility of the ferromagnetic state against long-wavelength
fluctuations, with negative D signaling loss of long-range
magnetic order. We briefly review the different contributions
to spin stiffness at the RPA level as their behavior and inter-
play provide insight into the magnitude of the first-order
quantum corrections and of ferromagnetic-state stability, as
discussed in Sec. IV B.

Expanding 	0�q ,
� given in Eq. �8� for small q ,
, the
bare �RPA� spin stiffness can be expressed as10

D�0� =
1

d
�1

2
��2�k� −

����k�2�
2�

� �14�

in d dimensions. Here the angular bracket � � represents mo-
mentum summation normalized over the number of occupied
states � 1

m�k�. The two terms in Eq. �14� of order t and t2 /U+

represent hopping and exchange contributions to the spin
stiffness, respectively, corresponding to delocalization-
energy loss and exchange-energy gain upon spin twisting.
The stability of the ferromagnetic state therefore involves a
subtle competition between the hopping contribution which
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favors the FM state and the exchange contribution which
tends to destabilize it. Both the hopping and exchange con-
tributions are sensitive to lattice structure, band dispersion,
and band filling.11

B. Quantum corrections

In the following we consider first-order quantum correc-
tions to the irreducible particle-hole propagator �Eq. �7�	. We
consider the relatively simpler case of a saturated ferromag-
net in which the minority-spin particle-hole processes are
absent as the minority-spin band is pushed above the Fermi
energy due to Coulomb repulsion. In this case the effective
antiparallel-spin interactions at lowest order reduce to the
bare interactions U and J, and the effective parallel-spin in-
teractions reduce to a single term involving the majority-spin
particle-hole bubble. Generally, these effective interactions
involve a series of bubble diagrams, with even and odd num-
bers of bubbles, respectively.

Diagrammatic contributions to the first-order quantum
correction 
�1� are shown in Fig. 2. The interaction lines are
either U or J, depending on the orbitals of the connecting
fermion lines. The external ��=� ,� on the right� orbital
degrees of freedom are also summed over to include both the
intraorbital and interorbital contributions as in Eq. �6�. The
physical meaning of the four diagrams has been discussed
earlier.10 Diagrams �a� and �d� represent corrections to the
irreducible propagator due to self-energy corrections to the
spin-↓ particle arising from spin and charge fluctuations, re-
spectively. The shaded part in diagram �a� represents the
propagator 	RPA

−+ �Q ,��. Diagrams �b� and �c� represent ver-
tex corrections, where the shaded part represents the kernel
�RPA

−+ �Q ,�� introduced in Eqs. �12� and �13�. In diagram �b�,
the opposite-spin particle-particle interaction suppresses the
spin-↓ particle–spin-↑ hole correlation, yielding a negative
correction to 
. Diagram �b� therefore represents suppression
of the magnetic response due to particle-particle correlations.
All four diagrams involve a spin-charge coupling, as indi-

cated by the spin-↑ particle-hole bubble present explicitly in
diagrams �c� and �d� and implicitly in �a� and �b�.

Integrating out the fermion frequency-momentum degrees
of freedom, the first-order quantum corrections to the irre-
ducible particle-hole propagator are obtained as


�a��q,
� = �
Q
� d�

2�i

�U2 + J2�	��

−+�Q,�� + 2UJ	��
−+�Q,���

� �
k�
� 1

�k�−q
↓+ − �k�

↑− + 
 − i��2

�� 1

�k�−q+Q
↑+ − �k�

↑− + 
 − � − i�� , �15�


�b��q,
� = − 2�
Q
� d�

2�i

U���

−+�Q,�� + J���
−+�Q,���

� �
k�
� 1

�k�−q
↓+ − �k�

↑− + 
 − i��
�� 1

�k�−q+Q
↑+ − �k�

↑− + 
 − � − i��
� �

k�
� 1

�k�−Q
↓+ − �k�

↑− + � − i��
�� 1

�k�−q
↓+ − �k�

↑− + 
 − i�� , �16�


�c��q,
� = �
Q
� d�

2�i

�U2 + J2����

−+�Q,�� + 2UJ���
−+�Q,���

� ��
k�
� 1

�k�−q
↓+ − �k�

↑− + 
 − i��
�� 1

�k�−Q
↓+ − �k�

↑− + � − i���2

� �
k�
� 1

�k�−q+Q
↑+ − �k�

↑− + 
 − � − i�� , �17�


�d��q,
� = �
Q
� d�

2�i
�U2 + J2��

k�
� 1

�k�−q
↓+ − �k�

↑− + 
 − i��2

�� 1

�k�−Q
↓+ − �k�

↑− + � − i��
� �

k�
� 1

�k�−q+Q
↑+ − �k�

↑− + 
 − � − i�� . �18�

The 	−+ and �−+ appearing above are at the RPA level but
could be replaced by the renormalized propagators within a
self-consistent theory. We note that in the J→0 limit of de-
coupled orbitals, we recover the single-band Hubbard model
results.10

FIG. 2. The first-order quantum corrections to the irreducible
particle-hole propagator.
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As collective spin-wave excitations are represented by
poles in Eq. �5�, spin-rotation symmetry requires that 

=1 / �U+J� for q ,
=0, corresponding to the Goldstone
mode. Since the zeroth-order term 
�0� already exhausts this
requirement, the sum of the remaining terms must exactly
vanish in order to preserve the Goldstone mode. For this
cancellation to hold for arbitrary J and U, each higher-order
term 
�n� in expansion �7� must individually vanish, imply-
ing that spin-rotation symmetry is preserved order by order.
This cancellation is demonstrated below for the first-order
quantum correction.

Towards this end, we note that the boson term �quantity in
braces� in Eq. �16� for 
�b� can be expressed as

U���
−+ + J���

−+ = 
�U2 + J2�	��
−+ + 2UJ	��

−+�/	0, �19�

which is of identical form as the boson terms in Eqs. �15�
and �17� for 
�a� and 
�c�. With �k−q

↓+ −�k
↑−=2� for q=0, we

obtain, from Eqs. �15�–�18�,


�1��q = 0,
� = 
�a� + 
�b� + 
�c� + 
�d�

= �
Q
� d�

2�i� 1

2� + 
 − i��2

��
k�
� 1

�k�+Q
↑+ − �k�

↑− + 
 − � − i��
� �
�U2 + J2�	��

−+ + 2UJ	��
−+�

− 2
�U2 + J2�	��
−+ + 2UJ	��

−+�

+ 
�U2 + J2��	��
−+ − 	0� + 2UJ	��

−+�

+ 
�U2 + J2�	0�	 , �20�

which yields identically vanishing contribution for each spin-
fluctuation mode Q, thus preserving the Goldstone mode. We
note that this mode-by-mode cancellation is quite indepen-
dent of the spectral-weight distribution of the spin-
fluctuation spectrum between collective spin-wave and
particle-hole Stoner excitations. Furthermore, the cancella-
tion holds for all 
, indicating no spin-wave amplitude
renormalization, as expected for the saturated ferromagnet in
which there are no quantum corrections to magnetization.

Evaluation of the � integral in Eqs. �15�–�18� has been
discussed earlier.11 Using a spectral representation it is con-
venient to carry out the � integral numerically so as to in-
clude all three �acoustic, optical, and Stoner� contributions
from the magnon �	−+ ,�−+� and the particle-hole terms. A
typical spectral function plot of the RPA-level magnon
propagator shows �Fig. 3� the low-energy �acoustic�,
intermediate-energy �optical�, and high-energy �Stoner� con-
tributions, with the inset showing the dispersion of acoustic
and optical branches and onset energy of the Stoner branch.
Here and in the following, all energies have been expressed
in units of the hopping term t.

V. HUND’S COUPLING AND SUPPRESSION OF
QUANTUM CORRECTIONS

We will now show that Hund’s coupling results in a
strong suppression of quantum corrections, and this is the

central message of this paper. The suppression is approxi-
mately by an overall factor of �U2+J2� / �U+J�2 for the two
orbital case and by a factor of �U2+ �N−1�J2	 / �U+ �N
−1�J	2 for the N orbital case. The magnitude of the overall
factor is asymptotically exact in the two limits J→0 and J
→U. In these two limits the factor approaches 1 and 1/2,
respectively, for the two orbital case, whereas it approaches 1
and 1 /N, respectively, for the N orbital case. Indeed, for our
degenerate two-orbital Hubbard model �Eq. �1�	, this overall
factor plays the same role as 1 /N in the orbitally symmetric
N-orbital Hubbard model10 and generalizes this earlier result
to the case of arbitrary Hund’s coupling. In the orbitally sym-
metric case, the interaction term −U���Si�����Si�� involves
identical interorbital and intraorbital interactions �J=U�.

To see this overall suppression factor, we consider Eqs.
�15�–�18� for the quantum corrections 
. In Eq. �15�, assum-
ing similar contributions from the acoustic and optical
modes, which is a good approximation in the J�U limit
when the two modes become nearly degenerate, the boson
term 2UJ	��

−+ yields negligible contribution in view of the
opposite contributions �Eq. �11�	 of the acoustic and optical
modes. Hence, only the contribution from the first boson
term �U2+J2�	��

−+ survives, leaving an overall factor �U2

+J2� on carrying out the Q ,� integration. Comparing with
the corresponding factor �U+J�2 for the equivalent single-
orbital case �with identical exchange splitting� yields an
overall relative factor of �U2+J2� / �U+J�2. In view of Eq.
�19�, the quantum correction 
�b� also involves the same bo-
son term and hence yields the same overall factor. Similarly,
the quantum corrections 
�c� and 
�d� together yield the same
boson term and hence the same overall factor.

Extending to N orbitals, the first boson term in Eq. �15�
will be �U2+ �N−1�J2		��

−+, where U2 corresponds to an in-
traorbital scattering �� to �� at each of the two interaction
vertices shown, and J2 corresponds to the �N−1� interorbital
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FIG. 3. �Color online� All three contributions—the low-energy
�acoustic�, intermediate-energy �optical�, and high-energy
�Stoner�—as seen in a typical spectral function plot of the magnon
propagator �	��

−+�Q ,��	RPA for Q= � �

2 , �

2 , �

2 �, are included in evalu-
ating the � integral in Eqs. �15�–�18�. Inset shows the dispersion of
the acoustic and optical branches and the onset energy for the
Stoner branch for the sc lattice with t�=0.25, U=15, J=3, and band
filling n=0.5.
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scatterings �� to ��, which yield identical contributions as
	��

−+ =	��
−+ in the orbitally degeneracy ferromagnetic state. The

contribution of the other boson term in Eq. �15� involving the
interorbital magnon propagator 	��

−+ will continue to be small.
Again, comparing with the corresponding factor �U+ �N
−1�J	2 for the equivalent single-orbital case yields an overall
relative factor of �U2+ �N−1�J2	 / �U+ �N−1�J	2.

The magnitude of the overall factor is also exact in the
J→U limit, as shown below. The boson term in Eq. �15� can
be identically written, in view of Eqs. �10� and �11�, as

�U2 + J2�	��
−+ + 2UJ	��

−+ =
1

2
��U + J�2	aco

−+ + �U − J�2	opt
−+	 ,

�21�

in terms of the acoustic and optical branches. Therefore, in
the J→U limit, the contribution of the optical mode van-
ishes, leaving an overall factor of 1/2, as also resulting from
the expression �U2+J2� / �U+J�2.

The topology of the first-order diagrams shown in Fig. 2
�for arbitrary J� is exactly the same as that for the J=U
case.10 This will hold to all orders due to the similarity of the
two models. Higher-order diagrams will therefore involve
multiples of the same diagrammatic elements. For example,
diagrams at the second order can have two self-energy inser-
tions as in �a� or one self-energy insertion �a� and one
crossed ladder �b�, etc. As these elements yield the same
factor �U2+J2� / �U+J�2, the nth-order diagrams will involve
n powers of this factor.

Band ferromagnetism being a strong-coupling phenom-
enon, quantum corrections to spin stiffness and magnon en-
ergy for the single-orbital Hubbard model with U�W have
been shown to yield strong renormalizations �reduction rela-
tive to the RPA values� in two and three dimensions.11 The
strong suppression of quantum corrections shown above
highlights the critical role of Hund’s coupling in stabilizing
ferromagnetism in realistic systems such as transition metals
Fe, Ni, and Co with multiple 3d orbitals. We propose that in
such systems, Hund’s coupling favors ferromagnetism by
strongly suppressing the quantum corrections.

VI. QUANTUM CORRECTIONS TO SPIN STIFFNESS

We now consider the net quantum correction 
 for small
q in order to obtain the renormalized spin stiffness, which
provides a quantitative measure of the stability of the ferro-
magnetic state with respect to long-wavelength fluctuations.
In Eqs. �15�–�18�, writing the antiparallel-spin particle-hole
energy denominator as

�k−q
↓+ − �k

↑− = 2��1 + ��k−q − �k�/2�	 �22�

and expanding in powers of the small band-energy differ-
ence,

� 
 − ��k−q − �k� = q · ��k −
1

2
�q · ��2�k, �23�

we find that besides the zeroth-order cancellation for q=0,
the first-order terms in � also exactly cancel. This exact can-

cellation implies that there is no quantum correction to the
delocalization contribution ��2�k� in the spin-stiffness con-
stant; only the exchange contribution in the spin stiffness is
renormalized by the surviving second-order terms in �, and
we obtain for the first-order quantum correction to stiffness:

D�1� = 2��U + J�
�1�/q2 =
1

d

�U + J�
�2��3 �

Q
� d�

2�i

��Ueff
a �Q,����

k�

���k��
2

�k�+Q
↑+ − �k�

↑− − � − i��
−

2Ueff
a �Q,��

	0�Q,�� ��
k�

��k�

�k�+Q
↑+ − �k�

↑− − � − i��
���

k�

��k�

�k�−Q
↓+ − �k�

↑− + � − i��
+

Ueff
c �Q,��

	0
2�Q,�� ��

k�

1

�k�+Q
↑+ − �k�

↑− − � − i��
���

k�

��k�

�k�−Q
↓+ − �k�

↑− + � − i��2

+ �U2 + J2���
k�

1

�k�+Q
↑+ − �k�

↑− − � − i��
���

k�

���k��
2

�k�−Q
↓+ − �k�

↑− + � − i��� , �24�

where d is the lattice dimensionality. Here we have intro-
duced effective interactions in the transverse channel:

Ueff
a = 
�U2 + J2�	��

−+�Q,�� + 2UJ	��
−+� ,

Ueff
c = Ueff

a − �U2 + J2�	0. �25�

As ��k is odd in momentum, the second and third terms in
Eq. �23� give vanishingly small contributions due to partial
cancellation.

The behavior of quantum correction to spin stiffness with
band filling is shown in Fig. 4 for different values of the
Hund’s coupling J. Here we have kept U+J fixed so that the
exchange band splitting and the classical spin stiffness re-
main unchanged. The quantum correction to spin stiffness
decreases sharply with J and reduces to exactly half the mag-
nitude when J=U, as shown in Fig. 5 for two different band
fillings. Inset shows a comparison of the normalized quan-
tum correction calculated from Eq. �23� with the approxi-
mate form �1+ �J /U�2	 / �1+J /U	2, which asymptotically ap-
proaches the calculated result in the two limits J /U→0 and
J /U→1, as discussed in Sec. V. These results clearly show
that even a small Hund’s coupling is rather efficient in
strongly suppressing the quantum correction.

We now discuss the behavior of the renormalized spin
stiffness, which is obtained from the magnon energy 
q
=2��1−U+
�q�	=Dq2 for small q, where 
=
�0�+
�1� in-
cludes the quantum correction up to first order. From the
contributions U+
�0�=1−D�0�q2 /2� �Eq. �8�	 and U+
�1�
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=D�1�q2 /2� �Eq. �24�	 of the classical and quantum terms,
we obtain the renormalized spin stiffness D=D�0�−D�1�.
Physically, the quantum correction D�1� corresponds to a
correlation-induced exchange contribution �of order t2 /U+�
to spin stiffness,10,11 which together with the �negative� clas-
sical exchange contribution in Eq. �14�, further reduces the
spin stiffness.

Figure 6 shows that the renormalized spin stiffness D rap-
idly changes sign from negative to positive with increasing J,
highlighting the effective stabilization of ferromagnetism by
Hund’s coupling, shown here for the simple cubic �sc� lattice
with t�=0.25 and fixed U+J=1.5W.

As discussed in Sec. V, generalizing to the N-orbital case,
the spin-stiffness quantum correction should be approxi-
mately suppressed by the factor �U2+ �N−1�J2	 / �U+ �N
−1�J	2. With increasing Hund’s coupling, this factor rapidly
approaches 1 /N, particularly for large N; the orbitally sym-
metric N-orbital Hubbard model therefore provides a good

approximation for transition-metal ferromagnets with five 3d
orbitals.

We have examined the role of this 1 /N suppression of
quantum correction on the spin stiffness for the orbitally
symmetric N-orbital Hubbard model �with J=U�. In this
case the renormalized spin stiffness can be expressed as D
=D�0�− 1

NDN=1
�1� with the quantum correction suppression fac-

tor 1 /N explicitly pulled out, where DN=1
�1� represents the cor-

rection for the single-orbital case. Figure 7 shows the renor-
malized spin stiffness for different number of orbitals N,
evaluated for a bcc lattice with t� / t=0.5, bandwidth W
=16t=3.2 eV, Coulomb interaction energy U=W=3.2 eV,
and the lattice parameter a=2.87 Å for Fe.

In a recent band-structure calculation for Fe,7 the interac-
tion energy considered is U=2.13 eV �so that the magnetic
moment evaluated per Fe atom is equal to 2.12�B� and the
bandwidth from the calculated DOS plot is seen to be about
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FIG. 4. �Color online� Quantum correction to spin stiffness for
the simple cubic lattice shown as a function of band filling for
different J with fixed U+J=1.5W=18t.
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FIG. 5. �Color online� Rapid suppression of quantum correction
to spin stiffness with Hund’s coupling J shown for the sc lattice at
two different band fillings. Inset shows comparison of the normal-
ized quantum correction with the approximate form �1
+ �J /U�2	 / �1+J /U�2, which asymptotically approaches the calcu-
lated result in the two limits J /U→0 and J /U→1.
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FIG. 6. �Color online� The effective stabilization of the ferro-
magnetic state by Hund’s coupling is shown by the rapid change in
J from negative to positive spin stiffness, shown as a function of
band filling for the simple cubic lattice with t�=0.25 and fixed U
+J=1.5W.
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FIG. 7. �Color online� Renormalized spin stiffness for the gen-
eralized N-orbital Hubbard model �with J=U� for different number
of orbitals N, showing the 1 /N suppression of quantum corrections
with orbital degeneracy, evaluated for the bcc lattice with band-
width W=16t=3.2 eV, Coulomb interaction energy U=W
=3.2 eV, and lattice parameter a=2.87 Å for Fe. The measured
value for Fe is 280 meV Å2.
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4 eV. The calculated electronic density of states shows the
majority band to be nearly filled and the minority band
nearly half filled. Within a particle-hole transformation, this
corresponds to a nearly saturated ferromagnet with a nearly
half-filled �n�0.5� lower band and a nearly empty upper
band. Our calculated values for the renormalized spin stiff-
ness for N=5 at the corresponding band filling �n�0.5� are
close to the measured value 280 meV Å2 for Fe. The spin
stiffness is seen to involve a quantum reduction in about 25%
near optimal filling.

VII. RENORMALIZED MAGNON DISPERSION

Turning now to the magnon dispersion over the entire
Brillouin zone, the renormalized magnon energy 
q for finite
q is obtained from the pole condition 1− �U+J�Re 
�q ,
−
q�=0 in Eq. �5�, where 
�q ,
�=
�0��q ,
�+
�1��q ,
�,
and the four contributions to the first-order quantum correc-
tion 
�1��q ,
� are given in Eqs. �15�–�18�. While the bare
particle-hole propagator 
�0��q ,
� remains real in the rel-
evant 
 range, the quantum correction 
�1��q ,
� is complex
for any finite 
�0 due to the coupling with charge fluctua-
tions, resulting in finite zero-temperature magnon damping.29

Both collective and Stoner excitations are included in evalu-
ating the � integral, as discussed below Eq. �20�.

The effect of Hund’s coupling on the renormalized mag-
non dispersion is shown in Figs. 8 and 9, which provide
comparisons of the bare �
q

0� and renormalized �
q� magnon
dispersions along symmetry directions for the simple cubic
and square lattices, respectively. Again U+J was kept fixed
so that the bare magnon energy remains unchanged. While
Hund’s coupling increases the magnon energy in the entire
Brillouin zone, the effect is particularly dramatic for long-
wavelength modes, which rapidly crossover from negative-
energy to positive-energy modes.

Even when the bare magnon dispersion exhibits nearly
Heisenberg form, with energies at X ,M ,R approximately in
the ratio 1:2:3 as in Fig. 8�b�, the renormalized magnon dis-
persion shows strong anomalous softening at X relative to R.
This indicates that magnon renormalization due to spin-
charge coupling results in the “generation” of additional ex-
change couplings J2 ,J3 ,J4, etc., within an equivalent
localized-spin model with the same magnon dispersion.

The renormalized spin stiffness and magnon energies ob-
tained above essentially determine the finite-temperature
spin dynamics and therefore the Curie temperature Tc. Due
to spin-flip scattering of electrons accompanying thermal
magnon excitation, a portion of the majority-spin spectral
weight is transferred to the minority-spin band above the
Fermi energy, while an equal amount of minority-spin spec-
tral weight is transferred to the majority-spin band below the
Fermi energy. A finite-temperature analysis of this spectral
weight transfer across the Fermi energy, the resulting mag-
netization reduction, and Curie temperature for the Hubbard
model have been discussed in Ref. 11 within a renormalized
spin-fluctuation theory in which the magnon amplitude and
energy are self-consistently renormalized by the factor
�Sz�T / �Sz�0, which ensures that the sum rule ��S+ ,S−	�
= �2Sz� is obeyed.

Extending the above analysis for finite Hund’s coupling,
the electron-magnon interaction term is modified to �U2

+J2�	��
−+ +2UJ	��

−+ as in Eq. �15�, which can be written as
�1 /2���U+J�2	aco

−+ + �U−J�2	opt
−+	 using the resolution of the

transverse spin propagators �Eqs. �10� and �11�	 into acoustic
and optical modes. If 
q and 
q

� refer to the magnon energies
of the acoustic and optical modes, assuming similar magnon
amplitude and energy renormalizations within the spin-
fluctuation theory,11 the Curie temperature is approximately
obtained as

1

kBTc
�

1

2��U + J�2�
q

2


q
+ �U − J�2�

q

2


q
��

��
k
� 1

�k−q
↓+ − �k

↑−�2

. �26�

Now, finite Hund’s coupling results in �i� gapped optical
modes with higher energies �
q

� �
q� than the acoustic
modes, �ii� reduced weight of the optical modes due to the
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FIG. 8. �Color online� Hund’s coupling results in a strongly
momentum-dependent enhancement of magnon energies as seen
from the magnon dispersion along symmetry directions in the Bril-
louin zone for the sc lattice at two different band fillings with t�
=0.25 and fixed U+J=18t=1.5W. The rapid crossover from
negative-energy to positive-energy long-wavelength modes with J
shows the strong stabilization of ferromagnetism by Hund’s
coupling.
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�U−J�2 factor in above equation, and �iii� enhancement of
the acoustic magnon-mode energies �even at fixed U+J�. All
three factors suppress the right-hand side of above equation,
directly resulting in enhanced Curie temperature. While this
enhancement of Tc is in general agreement with DMFT stud-
ies where only local excitations are incorporated, Eq. �26�
highlights the sensitivity to long-wavelength modes as well
in our Goldstone-mode-preserving approach. Negative-
energy long-wavelength modes as in Figs. 8 and 9 would
result in vanishing Tc even if bulk of the �short-wavelength�
modes have positive energy. Long-wavelength modes play a
particularly important role in low-dimensional systems. The
divergence of the right-hand side of Eq. �26� in one and two
dimensions yields vanishing Tc in accordance with the
Mermin-Wagner theorem.30

We now qualitatively discuss the effects of the interorbital
Coulomb interaction term. Being an extension of our earlier
Hubbard-model analysis, the diagrams considered in Fig. 2
actually correspond to a density interaction term ��,���V0
−J�����n��n���, with V0=J, involving only opposite-spin in-
teractions.

The remaining interorbital interaction term is therefore
�V0−J���,��n��n���. Being a density interaction, it contrib-
utes neither to the exchange splitting nor to the spin-
fluctuation propagator �	−+	RPA involving only ladder dia-
grams with transverse interaction terms S−S+ etc. Therefore,
the spin-stiffness quantum correction from diagram �a� in
Fig. 2 involving self-energy correction due to spin fluctua-
tions remains unchanged. The enhancement of ferromag-
netism due to suppression of quantum corrections by orbital
degeneracy and Hund’s coupling is therefore an independent
feature.

However, the density interaction �V0−J� does contribute
to additional spin-stiffness quantum corrections arising from
interorbital density fluctuations �diagrams similar to �d� in-
volving self-energy correction due to bubble diagrams with
alternating � and � orbitals and only spin-↑ bubbles as
minority-spin particle-hole processes are absent in the satu-
rated ferromagnet�. This first-order self-energy correction
physically incorporates the correlation effect of suppressed
simultaneous occupancy of the two orbitals.

This additional density-fluctuation contribution will in-
volve the charge fluctuation propagator 	0 / �1− �V0
−J�	0	�1+ �V0−J�	0	. Therefore, in the vicinity of the
orbital-ordering transition ��V0−J�	0�1	, the strong interor-
bital density fluctuations will yield significant spin-stiffness
quantum reduction and render the orbitally degenerate ferro-
magnet unstable. A complete account of this transition will
require investigating quantum effects on spin stiffness in the
orbitally ordered ferromagnetic state as well.

Far away from the orbital-ordering instability ��V0−J�	0
�1	, implicitly assumed in the orbitally degenerate ferro-
magnetic state considered here, these additional quantum
corrections will be relatively insignificant.

VIII. CONCLUSIONS

The role of orbital degeneracy and Hund’s coupling on
quantum corrections to spin-wave excitations in a band fer-
romagnet was investigated. A spin-rotationally-symmetric
approach was employed in which self-energy and vertex cor-
rections are incorporated systematically so that the Gold-
stone mode is explicitly preserved order by order. The
present study of quantum corrections for arbitrary Hund’s
coupling allows for a continuous interpolation between the
orbitally independent case �J=0� equivalent to the single-
band Hubbard model and the orbitally symmetric case of
identical interorbital and intraorbital Coulomb interactions
�J=U�, for which the first-order quantum corrections are
suppressed by the factor 1 /N. We find that even a relatively
small Hund’s coupling is rather efficient in strongly sup-
pressing the quantum corrections, especially for large N, re-
sulting in a strong enhancement of ferromagnetism.

This mechanism for the enhancement of ferromagnetism
by Hund’s coupling implicitly involves an interplay of sev-
eral band and lattice characteristics. Competition between
the delocalization ��2�k� and exchange ����k�2� /2� contri-
butions to spin-stiffness results in a subtle interplay of lattice,
dimensionality, band dispersion, spectral distribution, Cou-
lomb interaction, and band filling effects, as investigated for
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FIG. 9. �Color online� Rapid suppression of quantum correction
and stabilization of ferromagnetism due to Hund’s coupling as seen
in the magnon dispersion along symmetry directions for the square
lattice at two different band fillings with t�=0.5 and fixed U+J
=12t=1.5W. The dispersion along the �-X direction shows pro-
nounced anomalous softening near the zone boundary.
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several two-dimensional and three-dimensional lattices.11

For a two-orbital Hubbard model, the first-order quantum
correction to spin stiffness was obtained diagrammatically
and evaluated as a function of the Hund’s coupling strength
J. We showed that the effective quantum correction factor
decreases rapidly from 1 at J=0 to 1/2 at J=U, and its be-
havior with J closely follows the approximate form �U2

+J2� / �U+J�2 obtained from our diagrammatic analysis. In
the intermediate-coupling regime, with interaction strength U
comparable to the bandwidth, the renormalized spin stiffness
was evaluated in the whole range of band fillings and was
found to rapidly crossover from negative to positive values
with increasing Hund’s coupling, highlighting the strong role
of orbital degeneracy and Hund’s coupling on the stability of
the ferromagnetic state with respect to long-wavelength fluc-
tuations. We also obtained, for both the square and simple
cubic lattices, the renormalized spin-wave energy dispersion

q for momenta along symmetry directions in the Brillouin
zone. While Hund’s coupling results in an enhancement of
the magnon energy in the entire Brillouin zone, the effect is
particularly dramatic for long-wavelength modes, which rap-
idly crossover from negative to positive energy.

Generalizing to the N orbital case, an effective quantum
parameter �U2+ �N−1�J2	 / �U+ �N−1�J	2 was obtained
which, in analogy with 1 /S for quantum spin systems and
1 /N for the orbitally symmetric Hubbard model, plays the
role of � for quantum corrections in a band ferromagnet. For

large N, this quantum parameter decreases rapidly with the
Hund’s coupling J and saturates to 1 /N as J→U.

Physically, the suppression of quantum corrections due to
orbital degeneracy and Hund’s coupling is because of inter-
orbital incoherence of spin fluctuations ��Si�

+ Si�
− �=0�. There-

fore, the off-diagonal channels involving 	��
−+ do not contrib-

ute to the electron-magnon scattering, and the matrix-
element square is reduced to U2+ �N−1�J2 as compared to
�U+ �N−1�J	2 for the equivalent single-orbital case. The
spin-stiffness quantum correction is therefore reduced as it is
basically an additional exchange-type contribution due to the
spin-↓ spectral redistribution resulting from the electron-
magnon interaction.

This strong suppression of quantum corrections due to
orbital degeneracy and Hund’s coupling is quite significant
for the 3d transition-metal ferromagnets Fe, Co, and Ni,
where N=5. With J /U=1 /4, as considered in the recent
RPA calculations for iron,7 we obtain a value of 5 /16�0.3
for the quantum parameter. While the smallness of this quan-
tum correction parameter accounts for why RPA calculations
of the spin stiffness for Fe with realistic band structure yield
values in close agreement with the measured value of
280 meV Å2, it also highlights the significant magnitude of
the correlation-induced quantum corrections involved in the
measured spin-stiffness values for transition-metal ferromag-
nets.
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